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Abstract

This paper considers the existence of the generalized solution to the Cauchy problem for a

class of generalized Zakharov equation in two dimensions. By a priori integral estimates and

Galerkin method, the author establish the existence of the global generalized solution to the

problem.
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1. Introduction

Many authors studied the Zakharov system [1-5, 8-12]. In [1], B. Guo, J. Zhang and X. Pu

established globally in time existence and uniqueness of smooth solution for a generalized

Zakharov equation in two dimensional case for small initial data, and proved global existence of

smooth solution in one spatial dimension without any small assumption for initial data. [2]

proved low-regularity global well-posedness for the 1d Zakharov system. The asymptotic

behavior of Zakharov equations driven by random force is studied [3]. S. You studied a

generalized Zakharov equation and obtained the existence and uniqueness of the global solutions

to initial value problem [4]. Biswas and Song address the Zakharov-Kuznetsov-Benjamin-Bona-

Mahoney equation with power law nonlinearity [8]. By applying the extended direct algebraic

method, Seadawy founds the electric field potential, electric field and magnetic field in the form

of traveling wave solutions for the two-dimensional ZK equation [9]. Adem and Muatjetjeja
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compute conservation laws for the 2D Zakharov-Kuznetsov equation using Noether’s approach

through an interesting method of increasing the order of the 2D Zakharov-Kuznetsov equation

[11]. Doronin and Larkin consider initial-boundary-value problems for the linear Zakharov-

Kuznetsov equation posed on bounded rectangles [12]. Special interest was recently devoted to

quantum corrections to the Zakharov equations for Langmuir waves in a plasma [13]
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the parameter  defined as the square ratio of the light speed and the electron Fermi velocity is

usually large. In contrast, the coefficient  that measures the influence of quantum effects is

usually very small [14].

In this paper, we are interested in studying the following generalized modified Zakharov

system in two dimensions

2( ) ( ) ( ) (| | ) ,tiE E E nE E f E E           (1)

2 2| | .ttn n E n    (2)

with initial data

0 0 1( ,0) ( ), ( ,0) ( ), ( ,0) ( ).tE x E x n x n x n x n x   (3)

where 2
2

1 1 2( , ), ( , )E E E x x x   .

Now we state the main results of the paper.

Theorem 1. Suppose that

(i) 2 12 2 1 2
0 0 1( ) ( ), ( ) ( ), ( ) ( ).E x H n x H n x H     

(ii) ( ) ( ), | ( .) |f C f M     Where 0, 0 1.M   

Then there exists global generalized solution of the initial problem (1)-(3).
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To study generalized solution of the system(1)-(3), we transform it into the following form

(notice that ( ) ( )E E E      )

2( 1) ( ) ( ) (| | ) ,tiE E E nE E f E E           (4)

0,tn    (5)

2( | | ) .t n E n     (6)

with initial data
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0 0 0( ,0) ( ), ( ,0) ( ), ( ,0) ( ).E x E x n x n x x x    (7)

where 0 satisfying 0 1.n 

For the sake of convenience of the following contexts, we set some notations. For 1 q   ,

we denote ( )q dL  the space of all q th power integrable functions in d equipped with norm

( )
· q dL 

‖‖ and , ( )s p dH  the Sobolev space with norm , ( )
· s p dH 

‖‖ . If 2p  , we write ( )s dH 

instead of ,2 ( )s dH  . Let ( , ) ( ) ( )
n

f g f x g x dx  , where ( )g x denotes the complex conjugate

function of ( )g x . And we use C to represent various constants that can depend on initial data.

The paper is organized as follows. In Section 2, we establish a priori estimations. In Section 3, we

state the existence of global generalized solution.

2. A priori estimations

For the solution of system (4)-(7), we have

2 2 2 2

2 2

0( ) ( )
( , ) .

L L
E x t E

 

The conservation is obtained by taking the imaginary part of the inner product of (4) and E .

Lemma 1. Suppose that 2 2 22 1
0 0 0

2( ) ( ), ( ) ( ), ( ) ( )x H n x HE x L     . Then for the

solution of problem (4)-(7) we have

( ) (0).t M M

Where

2 2 2 22
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Proof. Taking the inner product of (4) and tE . Since
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From (5) and (6), we obtain
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Combining inequality (8) with (9) we obtain
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Thus we get Lemma 1.

Lemma 2 (Gagliardo-Nirenberg inequality [6]). Assume that ( )q nu L  , ( )m r nD u L  ,

1 , ,0q r j m     , we have the estimations

1

( )( ) ( )
,q np n r n

j m

LL L
D u C D u u

 


 

where C is a positive constant, 0 1
j
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Lemma 3. Suppose that

(i) 2 1
0 0

2 2 2 2
0( ) ( ), ( ) ( ), ( ) ( ).x H n x HE x L    

(ii) ( ) ( ), | ( .) |f C f M     Where 0, 0 1.M   

Then we have

2 2 2 2 2 2

2 2 2 2 2 2
( ) .

L L L L L L
E E n n CE           

Proof. By Hӧlder inequality, Young inequality and Lemma 2 we have 
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(10)

And noticing that ( ) ( ), | ( ,) |f C f M     we get
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|
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( ) |
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E E M
f d dx M d dx dxE   
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Using Gagliardo-Nirenberg inequality and noticing that 0 1  , we write

2 2 2

2( 21) 2 21
| | .

41 L L L
E E

M
dx C CE E 


   


  (12)

Note that from Lemma 2 and eq. (10)-(12), one has
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1
( 1) ( )
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Since  is larger than 1, we thus get Lemma 3.

Lemma 4. Suppose that

(i) 2 1
0 0

2 2 2 2
0( ) ( ), ( ) ( ), ( ) ( ).x H n x HE x L    

(ii) ( ) ( ), | ( .) |f C f M     Where 0, 0 1.M   

Then we have

2 1 2 .t t tH H H
E n C    

Proof. Taking the inner product of eq. (4) and V , (5) and v , (6) and  , it follows that

   2( 1) ( ) , ( ) (| | .) ,tiE E E V nE E f E E V         (13)

 , 0,tn v   (14)

   2, ( | | ) , .t n E n       (15)

where  2
0, iv v H ( 1, 2)i  , 1 2( , ),V v v 1 2( , )v v  .

By Hӧlder inequality, it follows from eq. (13) that 
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(16)

By Gagliardo-Nirenberg inequality, we know that
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Hence from (16) we get

  2
0

, .t H
E V C V (17)

Using Hӧlder inequality, from eq. (14), there is 
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, , , ,t L L H
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From eq. (15) and Hӧlder inequality, we have 
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Hence from (17)-(19), one obtain Lemma 4.
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3. The existence of generalized solution

In this section, we formulate the proof of Theorem 1. First we give the definition of

generalized solution for problem (4)-(7).

Definition 1. The functions 1 1, 2( , ) ( ; ) ( ; ),E x t L H W H      

1 1, 1( , ) ( ; ) ( ; ),n x t L H W H       1, 22( , ) ( ; ) ( ; ),x t L L W H        are called

generalized solution of problem (4)-(7), if for any they satisfy the integral equality
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with initial data

0 0 0 0 0 0| ( ), | ( ), | ( ),t t tE E x n n x x     

Next, we give two lemmas recalled in [7].

Lemma 5. Let 0 1, ,B B B be three reflexive Banach spaces and assume that the embedding

0B B is compact. Let

0 1

0 1 0 1((0, ); ), ((0, ); ) , ,1 , .p pV
W V L T B L T B T p p

t

 
        

 

W is a Banach space with norm

0 1
0 1((0, ); ) ((0, ); )

.p ptW L T B L T B
V V V 

Then the embedding 0 ((0, ); )pW L T B is compact.

Lemma 6. Let  be an open set of n and let , ( ), 1p ng g L p     , such that

( )
a.e. in and .pL

g g g C  
  

Then g g  weakly in ( )pL  .

Now, one can estimate the following theorem.

Theorem 2. Suppose that

(i) 2 1
0 0

2 2 2 2
0( ) ( ), ( ) ( ), ( ) ( ).x H n x HE x L    
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(ii) ( ) ( ), | ( .) |f C f M     Where 0, 0 1.M   

Then there exists global generalized solution of the initial value problem (4)-(7).

1
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1, 2

1, 1

1, 2
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( , ) ( ; ) ( ; ),

( , ) ( ; ) ( ; ).
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x t L L W H

    

    

    

 

 

 

 

 

 

Proof. By using Galerkin method, choose the basic periodic functions { ( )}j x as follows:

2
0( ) ( ), ( ) ( ), 1, 2, , .j j j jx x x H j l        

The approximate solution of problem (4)-(7) can be written as

1 1 1

( , ) ( ) ( ), ( , ) ( ) ( ), ( , ) ( ) ( ),
l l l

l l l
j j j j j j

j j

l l

j

lE x t t x x t t x n x t t x      
  

    

where

 21 1 2, , ( ) ( ( ), ( )),l ll
j j

ll l
jE E E t t t   

 1 2 1 2, , ( ) ( ( ), ( )).l l l
j j jt t t      

and  is a 2-dimensional cube with 2D in each direction, that is,

1 2{ ( , ) || | 2 , 1,2}.ix x x x D i     According to Galerkin’s method, these undetermined

coefficients ( )j
l t , ( )j

l t and ( )j
l t need to satisfy the following initial value problem of the

system of ordinary differential equations
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(20)

 , 0, 1, 2, , ,l l
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(22)

with initial data

0 0 0 0 0 0| ( ), | ( ), | ( ).l l l l l l
t t tE E x n n x x      (23)

Suppose

11 2

0 0 0 0 0 0( ) ( ), ( ) ( ), ( ) ( ), .H Hl l Llx E x n x n x x x lE     
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Similarly to the proof of Lemma 1-4, for the solution ( , )lE x t , ( , )ln x t , ( , )l x t of problem (20)-

(23), we can establish the following estimations

  22 1 12

22 2 2 2

· ,l l l l l

L HL LH
EE E n C        (24)

2 2 1
.l l l

t t tH H H
n CE 

  
   (25)

where the constant C is independent of l and D . By compact argument, some subsequence of

 , ,l l lE n  , also labeled by l , has a weak limit  , ,E n  . More precisely

1in ( ; ) weakly star,lE E L H   (26)

1in ( ; ) weakly star,ln n L H   (27)

2in ( ; ) weakly star.l L L    

Eq. (25) imply that

2in ( , ) weakly star,l
t tE E L H    (28)

1in ( , ) weakly star,l
t tn n L H   

2in ( , ) weakly star.l
t t L H    

Moreover, let us note that the following maps are continuous.

1 42 2( ) ( ), ,H L u u  

1 1 22 2 2( ) ( ) ( ), ( , ) .H H L u v uv    

It then follows from eq. (26) and (27) that

2 2in ( , ) weakly star,lE w L L   (29)

2in ( , ) weakly star.l ln E z L L   (30)

First, we prove
2

w E . Let  be any bounded subdomain of 2 . We notice that

1 4the embedding ( ) ( ) is compact,H L  

and for any Banach space X ,

2the embedding ( , ) (0, ; ) is continuous.L X L T X  

Hence, according to eq. (26), (28) and Lemma 5, applied to 1
0 ( ),B H  4 2

1( ), ( )B L B H     ,

and says that some subsequence of |lE  (also labeled by l ) converges strongly to |E  in

2 4(0, ; ( ))L T L  . So we can assume that

2 4strongly in (0, ; ( )),l
locE E L T L  (31)
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and thus

a.e. in [0, ] .lE E T 

Then, using Lemma 6 and eq. (29) imply that
2

w E .

Second, we prove z nE . Let  be some test function in 2 1(0, ; ),L T H 2supp    .

   20 0 0
( ) .

T T T
l l l l ln E nE dxdt n E E dxdt n n E dxdt  

 
         

On one hand

  2 42 2 4 (0, ; ( ))(0, ; ( )) (0, ; ( ))0
.

T
l l l l

L T LL T L L T L
n E E dxdt n E E 

  
   

Since  is bounded, we deduce from eq. (27) and (31) that

 
0

0 ( ).
T

l ln E E dxdt l


    

On the other hand, let us note that 1 2(0, ; )E L T L  . In fact

1 2 2 4 2 4(0, ; ) (0, ; ) (0, ; )
.

L T L L T L L T L
E E   

Therefore, we deduce from eq. (27) that

0
( ) 0 ( ).

T
ln n E dxdt l


   

Thus l ln E nE in 2 1(0, ; )L T H  . So z nE .

Hence taking l  from eq. (20)-(25), by using the density of j in 2
0 ( )H  we get the

existence of local generalized solution for the periodic initial value problem (4)-(7). letting

D  , the existence of local solution for the initial value problem (4)-(7) can be obtain. By the

continuation extension principle and a prior estimate we can get the existence of global

generalized solution for problem (4)-(7).

We thus complete the proof of Theorem 2. Hence one can get Theorem 1.

Conclusion

This paper considers the existence of the generalized solution to the Cauchy problem for a

generalized Zakharov equation in two dimensions by a priori integral estimates and Galerkin

method, one has the existence of the global generalized solution to the problem.
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Discussion

One can regard (1)-(2) as the Langmuir turbulence parameterized by (0 1)    and study

the asymptotic behavior of the systems (1)-(2) when  goes to zero.
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